AD-A230 399

3 . .: | , .
/L\ o NCS TIB 90-11

@)) NATIONAL COMMUNICATIONS SYSTEM

TECHNICAL INFORMATION BULLETIN
90-11

MULTIPROTOCOL GATEWAY
CAPABILITIES DEMONSTRATION
REPORT

DTEC

el B

“4‘;

i

APRIL -9, 1990

OFFICE OF THE MANAGER
NATIONAL COMMUNICATIONS SYSTEM
WASHINGTON, D.C. 20305

DISTRIBUTICN sw“fvvm-“}
Appreval for p«..blic relocsey
.'?:j__ 2 Uplimited
3 "‘7 R H 24 y -
i’ -4 {} ~ 3 9 U 5 4 /7 -r

April 9, 1990 Final

Multiprotocol Gateway Capabilities Demonstration
Report C-DCA100-87-C-0063

Booz~-Allen & Hamilton, Inc.
4330 East West Highway
Bethesda, MD 20814

National Communications System
Office of Technology & Standards
Washington, DC 20305-2010 NCS TIB 90-11

Approved for Public Release; distribution is unlimited.

*The National Communications System is working to promote standards within the data
communication and telecommunication fields to increase the interoperability of
diverse communication 'systems. These interoperability efforts improve the NS/EP
communicationygcapabilities of the nation by providing additional interconnectivity
among Federal telecommunication assets. One such effort is determining the
feasibility of using the excess transmission capacity of the Integrated Services
Digital Network (ISDN) out-of-band signaling channels to reconstitute distrupted
networks. Present telecommunication networks use one of many different protocol
suites to interconnect their services. Networks employing different protocols
cannot communicate with one another because the diverse protocols are incompatible.
To address the protocol incompatibility issue, we recommend developing mechanisms,
such as gateways that provide protocol conversions, to interconnect networks using
diverse protocols.

ISDN Data Communication 47
Networks NS/EP
Unclassified Unclassified Unclassified

“

MULTIPROTOCOL GATEWAY
CAPABILITIES DEMONSTRATION
REPORT

Accession For
NTIS GRA%I

DTIC TAB g
Unannouaced O
Justification

By.
Distribqﬁ}gp(_
Avallabiltty (Codes
lAvail and/or
Special

!

APRIL 9, 1990

A-l

BOOZ-ALLEN & HAMILTON INC.
4330 EAST WEST HIGHWAY
BETHESDA, MD 20814

PRCPARED FOR

CFFICE OF THE MANAGER

NATIONAL COMMUNICATIONS SYSTEM
8TH & SOUTH COURTHOUSE ROAD
ARLINGTON, VA 22204

UNDER CONTRACT NO. DCA100-87-C-0063

BOOZ+ALLEN & HAMILTON INC.

TABLE OF CONTENTS

1.0 INTRODUCTION

1.1 Background

1.2 Purpose

1.3 Project References
1.4 Organization

2.0 GATEWAY ARCHITECTURE

2.1 Gateway Environment And Components
2.2 Hardware

2.3 Interfaces

2.4 Minimum Equipment Configuration

3.0 GATEWAY SOFTWARE

Operational Description

3.1

3.2 Functional Breakdown

1 Man-Machine Interface

.2 Gateway State Handling

.3 Gateway Driver

4 Call Processing

5 Data Transfer Processing
3.3 Notes On Current Implementation

4.0 MULTIPROTOCOL GATEWAY DEMONSTRATION

4.1 Equipment Configuration
4.2 Operational Demonstration Description

5.0 RESULTS AND CONCLUSIONS

Appendix A - List of Acronyms

ii

LIST OF EXHIBITS

External Gateway Environment
Multiprotocol Gateway Components
Gateway Parament¢r Settings
Gateway Operational Configuration
Gateway Routing Decision Chart

Protocol Development Lab Equipment
Configuration

Operational Gateway Demonstration
Environment

Demonstration Steps

iii

Page
Number

1.0 INTRODUCTION

The Office of the Manager, National Communications System
(OMNCS), has been tasked to ensure the provision of National
Security and Emergency Preparedness (NS/EP) telecommunications
for the Federal Government under all conditions. In support of
this task, the OMNCS is working to promote standards within the
data communication and telecommunication fields to increase the
interoperability of diverse communication systems. These
interoperability efforts improve the NS/EP commuiiication
capabilities of the nation by providing additional
interconnectivity among Federal telecommunication assets. One
such effort is determining the feasibility of using the excess
transmission capacity of the Integrated Services Digital Network
(ISDN) out-of-band signaling channels to reconstitute disrupted
networks.

1.1 BACKGROUND

Present telecommunication networks use one of many different
protocol suites to interconnect their services. Networks
employing different protocols cannot communicate with one another
because the diverse protocols are incompatible. To address the
protocol incompatibility issue, the OMNCS recommended developing
mechanisms, such as gateways that provide protocol conversion, to
interconnect networks using diverse protocols. These devices
will act as translators between the two networks while
maintaining communications with each network in its native
language.

In the data communications field there are a number of
prevalent standards for supporting end-to-end communications.
Some of the existing sets of protocols that the OMNCS has
identified to provide interoperability are:

. The International Telegraph and Telephone Consultative
Committee’s (CCITT) X.25 Recommendations

. The CCITT’s recommendations for Integrated Services Digital
Networks (ISDNs)

. The U.S. Department of Defense (DoD) developed Transport
Control Protocol (TCP)/Internet Protocol (IP).

Since these standards are expected to coexist in the near future,
gateways are needed that will allow users of these diverse
protocols to communicate.

Earlier OMNCS efforts focused on specifying a gateway
between X.25 and TCP/IP. Both a gateway development and

1-1

description [1], and a specification and description language
(SDL) document [2] were developed. These documents provide
information to begin software development of an X.25-TCP/IP
gateway that would allow users of the two protocols to exchange
information.

More recent OMNCS efforts have focused on developing a
network component to allow X.25 end user traffic to use future
ISDNs as transport networks to interconnect disrupted portions of
their packet-switched networks. This work investigated the use
of the excess transmission capacity of ISDN out-of-band signaling
channels to reconstitute disrupted networks. To assess this
capability, the two protocols were compared, followed by a
definition of protocol operating states and transitions among
states needed to control and implement an X.25-ISDN gateway.
Based on these preliminary operating states, a functional SDL
document for an X.25-ISDN gateway was developed. The X.25-ISDN
gateway has been implemented and its capabilities demonstrated.
The X.25-ISDN gateway and demonstration are described in
X.25-ISDN Gateway High Level Lanquage Program Demonstration [12].

Building upon this previous work, an SDL description for a
gateway designed to interconnect CCITT X.25 end users, Defense
Data Network (DDN) X.25 (TCP/IP) end users, as well as CCITT X.25
and DDN X.25 (TCP/IP) end users, over the ISDN D channel was
developed. The specification outlines the internal functionality
of gateway components, their modules, and the interrelationship
between these modules.

1.2 PURPOSE
The purpose of this document is to:

. Provide a description of the multiprotocol gateway and its
associated hardware and software

. Describe the operational gateway demonstration that took
place at Booz, Allen & Hamilton on February 28, 1990

. Provide results and conclusions drawn from the
demonstration.

1.3 PROJECT REFERENCES

The following documents have been used in the development of
this document:

1. X.25/PLP/TCP Gateway Development and Description. National
Communications System. February 1986.

2. X.25/PLP-DDN/TCP Gateway SDL Technical Specification.
National Communications System. June 1986.

3. X.25 and ISDN Packet Mode State Transition Tables. National
Communications System. November 1987.

4. X.25-ISDN Gateway State Transition Tables. National
Communications System. May 1988.

5. Data Communications Networks: Interfaces. Recommendations
X.20-X.32. CCITT, Vol. VIII - Fascicle VIII.3. 1984.

6. Inteqgrated Services Digital Network (ISDN). Series I
Recommendations. CCITT, Vol. III - Fascicle III.S5. 1984.

7. X.25-ISDN Gateway SDL Description. National Communications
System. August 1988.

8. Functional Specification and Description Lanquage (SDL)
Recommendations Z.101 - 104. CCITT, Veol. VI - Fascicle

VI.10. 1984.

9. Defense Data Network X.25 Host Interface Specification.
Defense Communications Agency. December 1983.

10. Internet Protocol. MIL-STD-1777, Defense Communications
Agency, J110. 12 August 1983.

11. Transmission Control Protocol. MIL-STD-1778, Defense
Communications Agency. 12 August 1983.

12. X.25-ISDN Gateway High lLevel Language Program Demonstration.
National Communications System. May 12, 1989.

13. Multiprotocol Gateway SDL Description. National
Communications System. August 23, 1989.

The foundation of the multiprotocol gateway is composed of
the CCITT protocol specifications (5 and 6) and the DDN protocol
specifications (9 though 11). Other references include ¢ocuments
relating to earlier efforts in support of a X.25-TCP/IP gateway
(1 and 2) and efforts involving the X.25-ISDN gateway (3 and 4).
The methodology and syntax used to specify the gateway is based

on a separate series of CCITT recommendations -- Z series (8).
1.4 ORGANIZATION

The Multiprotocol Gateway Capabilities Demonstration Report
is composed of five sections. Section 2 focuses on the gateway

architecture. It describes the environment in which the gateway
will operate and includes a description of the gateway

1-3

components, specific hardware, and gateway interfaces.
gateway software is described in Section 3. Section 4 contains a
description of the gateway demonstration. Results and

conclusions drawn from the demonstration are contained in Section
5.

The

2.0 GATEWAY ARCHITECTURE

The multiprotocol gateway is designed to support the
interconnection of CCITT X.25 end users, DDN X.25 (TCF/IP) end
users, as well as CCITT X.25 and DDN X.25 (TCP/IP) end users,
over the ISDN D channel. Consistent with the mission of the
OMNCS, the gateway is designed to support emergency
communications. This requires that the gateway be transportable
and use hardware that is readily available. For these reasons,
the gateway has been developed for a 386-based microcomputer
using the DOS operating system. However, the modular design
approach to the gateway is applicable to the design of larger
gateways, such as a Digital Equipment Corporation MicroVAX II
based gateway that could support multiple connections at a faster
throughput rate.

2.1 GATEWAY ENVIRONMENT AND COMPONENTS

The environment in which the multiprotocol gateway will be
operating is shown in Exhibit 2-1. As pictured, the environment
is divided into four sections: the X.25 network, the DDN (TCP/IP)
network, the ISDN, and the gateway. For the gateway to be useful
it is necessary that the network users operate in their native
mode. It is the gateway’s responsibility to make up for all
incompatibilities. Network users are not required to have any
additional equipment or make any modifications to their
configuration when communicating across networks.

The gateway can be subdivided into the following four
components:

. CCITT X.25 network interface

. DDN X.25 (TCP/IP) network interface
. ISDN Terminal Adaptor (TA) interface
. Protocol translation.

The CCITT X.25 network interface can be configured to appear
as a standard data terminal equipment (DTE) device connected to
an X.25 network or it can be configured to appear as a standard
data circuit-terminating equipment (DCE) device supporting an
X.25 end user. The CCITT X.25 network interface will perform all
addressing, flow control, and call setup/clearing that are
normally part of the X.25 protocol. The CCITT X.25 hardware and
software are off-the-shelf, commercially-developed products.

Similarly, the DDN X.25 (TCP/IP) network interface can be
configured to appear as a standard DTE device connected to the
DDN or it can be configured to appear as a standard DCE device
supporting a DDN X.25 end user. The DDN X.25 network interface
will perform all addressing, flow control, and call
setup/clearing that are normally part of the TCP/IP protocol.

2-1

EXHIBIT 2-1

Multiprotocol Gateway External Environment

X 23 ENDUSER

cciTT
X.25

GATEWAY

X.25

X 25 ENDUSER

GATEWAY

DDN ENDUSER

PROTOCOL TRANSLATION

DDN X.25

X.25

1ISON | TCP/IP

370

ISON
BRI

ISON

GATEWAY

DON ENDUSER

- el

- e

The DDN X.25 (TCP/IP) hardware and software are off-the-shelf,
commercially-developed products.

The ISDN TA interface provides the basic rate interface
(BRI) to the ISDN. The ISDN BR1l supports two 64 kilobits per
second (kbps) circuit-switch . channels (referred to as B
channels) and one 16 kbps packet data channel (D channel). The D
channel serves two main purposes. First, it carries
common-channel signaling information to control circuit-switched
calls on associated B channels at the user interface. 1In
addition, the D channel may be used for packet-switching (9600
bps) or low-speed (100 bps) telemetry at times when no signaling
information is waiting. The multiprotocol gateway uses the
excess bandwidth in the D channel to provide packet-switched
transport services. The ISDN TA hardware and software are
off-the-shelf, commercially-developed products.

The protocol translator will be the interface between the
three end user types. It will perform packet translations,
maintain address tables, track status of the connections, and
provide the man-machine interface with the gateway. The protocol
translator has been developed and implemented using the Microsoft
"C" programming language.

2.2 HARDWARE

The multiprotocol gateway is composed of two types of
components; a master processing unit (MPU) and a network
interface card (NIC). Each component is designed around an
independent microprocessor unit, supporting memory, and
input/output controllers.

Each operational gateway configuration is comgcsed of a
single MPU controlling gateway operation and three NICs to
provide the interface for each of the physical connections
supported. Exhibit 2-2 shows the four basic gateway components,
their interrelationships, and associated external interfaces.

2.2.1 Master Processing Unit

The MPU controls al®' gateway operations, including:

. User interface

. Protocol and packet translations

Address mappings

Packet routing

Statistics gathering and error reporting

Packet buffering

Real-time scheduling of multiple independent processes
Communications across components.

2-3

EXHIBIT 2-2

Multiprotocol Gateway Components

MPU
GATEWAY
SPECIFIC
FUNCTIONS

DDN (TCP/IP)
NIC

RS-232C
INTERFACE

RS232C

RS232C

2-4

P $P e R $ 2 W 2 O —m e

The MPU selected for the multiprotocol gateway is based on a
Compaqg 386 super microcomputer with the following
characteristics:

. 32 bit microprocessor; based on an INTEL 386 chip
. 4 megabyte (MB) main memory

. 20 megahertz (MHz) internal clock

. Adjustable cache memory

. 120 MB direct access storage

. 1.2 MB floppy disk.

This configuration will support system development and testing as
well as the real-time operation of the gateway.

2.2.2 Network Interface Cards

Three types of NICs are to be used in the multiprotocol
gateway. The first NIC provides the interface to the CCITT X.25
network, the second supports the interface to the DDN X.25
(TCP/IP) network, and the third provides the terminal adaptor
capabilities required for the ISDN. The NICs perform the unique
protocol processing functions required of the physical, link, and
network layers of the specific networks being connected. The DDN
X.25 NIC also supports the transport layer functions provided by
TCP. All of the NICs are personal computer adaptor boards and
interface directly to the MPU’s input/output bus.

2.2.2.1 CCITT X.25 NIC. The EICON X.25 PC card has been
selected for the CCITT X.25 NIC. The card has the following
characteristics:

. 32 bit microprocessor; based on Motorola 68008 chip
. 512 kilobytes (kB) random access memory (RAM)

. 3.68 MHz internal c<lock

. 1 28530 serial communications controller

. 4 direct memory access channels.

All processing is controlled through software downloaded from the
MPU, requiring no off-line program storage. Configuration
parameters used for the EICON X.25 interface card in the
multiprotocol gateway implementation are as follows:

. Memory Port Addressing - CA00
. I/0 Port Addressing - 380
. PC Bus Interrupt - IRQ3
. Software Interrupt Vector - 5C

Refer to the EICON Technology Adapter card Installation Guide for
more information.

2.2.2.2 DDN X.25 (TCP/IP) NIC. The DDN X.25 (TCP/IP) NIC

selected is the Frontier Technologies Corporation’s AdCom2-I
Intelligent Communication Controller. The card has the following
characteristics:

. 80188 microprocessor

. 512 kB 'AM

. 280 based communications controller
. 4 direct memory access channels.

All processing is controlled through software downlocaded from the
MPU, requiring no off-line program storage. Configuration
parameters used for the AdCom2-I interface card in the
multiprotocol gateway implementation are as follows:

. Memory Port Addressing - D000
. I/0 Port Addressing - 340

. PC Bus Interrupt - IRQ11
. Software Interrupt Vector - 6A

Jumper settings for the AdCom2-I are as follows:

Reset (JP1l) - none

ROM Size (JP2, JP3, JP4) - all set at "AB"

RT (JP5) - XT/AT position, "BC"

High Order Address (JP6) - At/Rt position, "AB"
RAM Size (JP7) - 256k position, "ABY

Clock Rate (JP8) - "BC" position.

Refer to the AdCom2-I Plus User/Programming Manual for more
information.

2.2.2.3 ISDN NIC. The ISDN NIC selected is the TELEOS B100OPC
Communications Coprocessor. The B100PC Communications
Coprocessor is an IBM PC/XT/AT-compatible basic rate (2B+D)
adapter, providing ISDN S/T interface compatibility in accordance
with CCITT recommendations at the physical, data link, and
network layers. The card has the following characteristics:

68HC000 processor

512 kB RAM

12.288 MHz clock

4 direct memory access channels.

Similar to the X.25 NIC, all processing is controlled with
real-time software that is downloaded from the MPU and requires
no off-line storage. The TELEOS equipment has been used
previously in the development and implementation of the X.25-ISDN
Gateway [12]. Configuration parameters used for the Teleos
terminal adapter card in the multiprotocol gateway implementation
are as follows:

2-6

. Memory Port Addressing - B0O0O
. I/0 Port Addressing - 100
. PC Bus Interrupt - IRQS
. Software Interrupt Vector - 60

Refer to the Teleos B100PC Communications Coprocessor Users
Manual for more information.

2.3 INTERFACES

The multiprotocol gateway provides four external interfaces:
a gateway/CCITT X.25 interface, a gateway/DDN X.25 interface, a
gateway/ISDN interface, and a man-machine interface (MMI). These
interfaces are shown in Exhibit 2-2.

2.3.1 Gateway/CCITT X.25 Network Interface

The gateway/CCITT X.25 interface is provided through the
EICON NIC. The EICON NIC supports the following:

. RS-232-C network interface

. 32 virtual circuits

. 9 concurrent host sessions

. Selectable, internal/external clocking

. Data Rates Supported: 2400, 4800, 9600, 19200, 38400, 48000,
56000, 57600, 64000.

2.3.2 Gateway/DDN X.25 Interface

The gateway/DDN X.25 interface is provided through the
AdCom2-I NIC. The AdCom2-I NIC supports the following:

. RS-232~-C network interface

. 32 virtual circuits
. Selectable, internal/external clocking
. Data Rates: 2400, 4800, 9600, 19200, 38400, 48000, 56000.

2.3.3 Gateway/ISDN Interface

The gateway/ISDN interface is provided through the Teleos
B100PC Communications Coprocessor NIC. The B100PC supports the
following:

. Standard 8-pin ISDN RJ-45 interface

. Standard 6-pin analog phone RJ-11 interface

. ISDN BRI (2B+D); Line Rate, 192 kbps (nominal)
. B channel data rate, 64kbps

. D channel data rate, 16kbps

. D channel X.25 packet data rate, 9.6kbps.

2.3.4 Man-Machine Interface (MMI)

The MMI provides a menu-driven interface so the gateway
operator can perform the following gateway functions:

Gateway start-up

Statistics gathering and reporting
Gateway shutdown

Address and routing table modifications.

The interface is provided through a standard red, blue, green
(RGB) color monitor and IBM-AT compatible keyboard.

2.4 MINI EQUIPMENT CONFIG TION

The multiprotocol gateway should be implemented on a 286 or
386 based AT machine running DOS with the following components
installed:

1 MB of onboard memory

1.2 MB floppy disk drive or hard disk

1 EICON X.25 PC card

1 Frontier Technologies Corporation AdCom2-I Intelligent
Communications Controller

. 1 TELEOS B100PC Communications Coprocessor.

3.0 GATEWAY SOFTWARE

The purpose of the gateway software is to provide the
protocol translation capabilities of the TCP-IP/X.25/ISDN Gateway
system. This translation ability is extensive enough to allow
full connectivity through the gateway (i.e., any user type is
allowed to connect to any other user type).

The program is designed to be portable and runs in the DOS
operating system. The program was implemented in the "C"
programming language using the Microsoft Quick C compiler. The
platform used to support the gateway system can be any 286 or 386
based machine with standard RGB monitor. The program design
allows easy tailoring of major operational parameters. The
current settings of these parameters, as well as the method by
which they can be changed are contained in Exhibit 3-1.

This program provides for transparent operation within the
context of the end user networks. The program design and
implementation provide for minimum effect to end user nodes of
the existing network. For limitations of this transparency in
the current implementation see Section 3.3.

The operating environment of the gateway is illustrated in
Exhibit 3~2. As mentioned above, each of the network interfaces
is fully connected to allow communication along all of the
possible paths. The man-machine interface is implemented in menu
format to provide for ease of use and flexibility of operation.
The gateway operator is assumed to be a passive operator. Once
the gateway has been initialized no further operator intervention
is required.

3.1 OPERATIONAL DESCRIPTION

To support the protocol translation function the gateway has
the ability to accept incoming calls and data, determine the next
required connection in the desired end user circuit, and request
the call or transmit the data. All routing decisions are made at
time of call initiation. These decisions are based on operator
entered address translation and gateway location values. Gateway
locations are represented by the ISDN address of the gateway.
Exhibit 3~3 illustrates the decision flow chart used to determine
the next link routing.

For gateway to gateway links the source gateway determines
the ultimate destination protocol type and transmits it along
with the destination and source address information to the remote
gateway. A special call header packet is transmitted immediately
after the ISDN call has been established. Upon receipt of the

Exhibit 3-1

Gateway Parameter Settings

Operation

of supported
end users

Max # of concurrent
open ISDN links

Max # of concurrent
X.25 links

Max # of concurrent
open TCP links

X.25-TCP Inter-
address mapping

entries
ISDN location

ISDN gateway address

TCP gateway address

X.25 board interface
parameters

TCP board interface
parameters

TCP network interface
parameters

DDN/X.25 network
interface parameters

ISDN board interface
parameters

* see notes

Current Value

50

N/A

N/A

0002

010.000.000.052

refer to
paragraph 2.2.2.1

refer to
paragraph 2.2.2.2

refer to
paragraph 2.2.2.2

refer to
paragraph 2.2.2.2

refer to
paragraph 2.2.2.3

Method of Change

Change constant
MAX_TBL in
"gatedef.h" (1,2)*
Change MAX_ISDN_OUT
constant in
"gatedef.h" (1,2,3)%*
Change MAX_ X25_ OUT
constant in
"gatedef.h" (1,2)*
Change MAX_TCP_OUT
constant in
"gatedef.h" (1,2,4)*
Create/Modify
translation table

Create/Modify
translation table
entries

Modify variable
"loc_isdn_addr" in
"gatedev.c" (2)*
Modify "NET.TCP"

Modify X25START.BAT

Modify TCP_START.BAT

Modify NET.TCP

Modify NET.X25

Modify ISDNSTART.BAT

Exhibit 3-1

Gateway Parameter Settings
(cont.)

Notes:

1. Increases to this value will affect speed and memory used
2. These change require recompile before taking affect

3. The interface board requires prior notification of the
number of listening circuits (incoming calls from other
gateways). This number is currently set at 4 and will not
be affected by changes to the above constant.

4. Refer to paragraph 3.3.

Exhibit 3-2

Gateway Operational Configuration

DDN/X.25
Network

ADCOM 2-| Board
Packet Formatting

TCPNP Frontier TCP/IP Interface

PC Environment

NETBIOS Routines
Extermnal Statistics,
Packet Transfers with
ADCOM 2-| Board ~Gateway Environment -
internal
X.25 S ISDN
NETBIOS Y Gwﬂﬁﬁ: <" NETBIOS
External Statistics, External Statistics,
Packet Transfers Protocol Translation Packet Transfers
With Eicon Board With Teleos Board
t Basic VO
Elcon X.25 Board Teleos Board
Packet Formatting Packet Formatting
Man Machine Interface (MMI) l
X28 Execution Control, iSDN
Network Statistics Display, Network
Translation Table
Updates
3-4

Exhibit 3-3

Gateway Routing Decision Chart

Cstart D

TCP input X.25

Protocol
W

Remote
Gate

No
No
Open TCP
Connection
Open X.25
Connection Y
— (T
Yes - Open X.25
Connection
o
1
Open ISDN
Connection

call header the remote gateway sets up the next link in the
connection based on the information contained. The call header
information is not transmitted on the destination link. Errors
in any of the above network actions will result in immediate
cancellation of the call from the source node.

Adapter board interfaces are handled through specified
interrupt vectors. These interrupt vectors must be supplied
prior to system initialization (see Exhibit 3-1). The values of
the card setup parameters will vary from platform to platform
depending upon configuration. Direct adapter hardware interfaces
are handled by proprietary software modules and initiated by the
generation of the DOS interrupt specified as part of the setup
file. For the purpose of the following discussion these modules
will be referred to by the general term NETBIOS.

The gateway software provides a man-machine interface to
allow the gateway user to configure the gateway to support the
current operational environment, initialize it, monitor
throughput, and gracefully halt its execution. The gateway
operator is assumed to be a passive operator and is therefore not
provided with any command that will initiate, change, or
otherwise affect the flow of data packets through the gateway
when it is operating. Due to the limited nature of system level
resources extensive operator use of commands such as the
statistics command will slow the processing of data packets.

Finally the gateway software provides information gathering
capabilities on overall gateway operations. Two types of
information are provided: trace information and statistical
information. Trace information traces the flow of messages
through the gateway. Statistical information gives a breakdown
of the messages processed overall, relative to a single protocol
or relative to a single open link.

3.2 FUNCTIONAL BREAKDOWN
The gateway system is composed of five modules. These
modules perform the logical functions required to translate from

one protocol to another as well as the other support functions
listed in Section 3.1. These modules are:

. Man-Machine Interface - Supports the user interface

. Gateway State Handling - Manages start-up and shutdown of
the gateway

. Gateway Driver - Schedules translation oriented activities
as required

. Call Processing - Processes received call requests, routing
them to their destination

. Data Transfer Processing - Performs the physical data
transfer once a call has been established.

The following subsections discuss each of the above modules in
detail as well as their further decomposition into tasks and
routines.

3.2.1 Man-Machine Interface

The Man-Machine Interface module manages the interface
between the gateway operator and the gateway functions. There
are three types of interfaces with the operator: command flow
from the operator, information flow from the operator and
information flow from the gateway. Each of these interfaces
corresponds to an individual task within the MMI module. These
tasks are discussed in the following subsections.

3.2.1.1 command Handling Task. This task is responsible for the
processing of operator commands. It displays the necessary
menus, waits for operator input and transfers control to the
appropriate task or module depending on the command entered.

This module is also responsible for providing sufficient
prompting to the operator to allow for ease of use.

Upon program start this task displays the command entry menu
and prompts the operator for a command to perform. This task
will then cycle continuously checking for either operator input
or network input to process. This task calls the Gateway Driver
module to schedule and/or perform network actions. Receipt of an
operator command causes this module to verify the validity of the
command. If the command is invalid this task indicates the error
to the operator and waits for further input. If the command is
valid this task will initiate the appropriate module/task as
follows:

. If the command is a request for interface card
initialization, gateway startur. or call clearing, this task
will pass control to the Gate.ay State module to change the
gateway’s readiness state

. If the command is for return to DOS this task will pass
control to the Editing task to save the translation table
and then exit to DOS when this is complete

If the command is for statistics display this task will pass
control to the Statistics task for display of the requested
statistical breakdown

. If the command is for translation table editing this task
will transfer control to the Editing task of the MMI module

. If the command is for trace activation/deactivation this
task will record the requested state of the trace function.

The Command Processing task is composed of the following
routines:

. main - responsible for accepting and processing commands

. main_menu - responsible for the display of the main menu.

3.2.1.2 Statistics Handling Task. The purpose of this task is
to process requests for statistical display. This task displays

gateway statistics grouped by overall protocol type, relative to
a single protocol, and relative to a single active link. This
task is responsible for displaying the appropriate screen and
handling any interface required with the protocol NETBIOS to
gather the link level statistics.

Upon receipt of a request for overall transmission
statistics this task will display the previously captured
protocol level statistics. Once the display is completed the
task waits until the user has indicated that the next screen can
be displayed. After a prompt has been displayed this task will
cycle checking for both operator and network input processing anay
network input encountered. The Gateway Driver module is used to
check for network activity. Upon receipt of operator input this
task will display a screen containing at least the first 88 bytes
of the last message received on each of the three protocol links.
These messages are displayed in hexadecimal format. The task
then enters another wait state. Receipt of operator indication
to continue will then cause this task to return control to the
Command Processing task.

Upon receipt of a request for a specified protocol
transmission statistics the task will display an initial screen
showing internal statistics collected about traffic to and from
the protocol channel. This task will then enter a wait state to
allow the operator to read the screen. Wait sta.e processing is
as discussed above.

Receipt of an operator indication that the task can continue
causes the task to check for any open calls for the protocol. If
an outstanding call is found this task will transmit a statist.cs
request to the NETBIOS for information about the open link.
Information returned from this request is formatted, displayed to
the operator and a wait state is entered. This task will cycle
through all open calls in this manner and then return control to

3-8

the Command Processing task.

Where there are no open calls on the TCP or ISDN channels,
control will return to the Command Processing module after
display of the initial screen.

The Statistics task is composed of the following routines:

. Trans_stats - displays transmission statistics and last
packet received

. Stat_scr - displays the standard statistics screen

. Disp_brk_stats - displays the common portion of the
statistical breakdown

. X25_stats - displays X.25 related statistics

. TCP_stats - displays TCP related statistics and TCP link
statistics

. ISDN_stats - displays ISDN related statistics and ISDN link
statistics.

3.2.1.3 E4dit Handling Task. The Edit Handling task oversees
operator initiated translation table edits. This task is also
responsible for the initial load and final save of any existing
translation table entries.

Upon receipt of control at the time of system start this
task will determine if there is a previously saved translation
table. If a saved table is found then this task reads in the
saved table and indicates that at least one entry exists. If a
table file does not exist then this task indicates that the
translation table is empty.

Upon receipt of an operator request to perform a table edit
this task will display the first translation table entry to the
operator along with the edit session menu. It will then wait for
operator input. Continuous checks for network activity to
process are performed during this wait period. Operator input is
interpreted as follows:

. Request to edit current entry - opens current entry for edit
and displays the entry edit menu

. Request to edit specified address - requests address from
operator, finds address in translation table, opens entry
for edit, displays the entry edit menu

. Scroll to next entry - displays values associated with next
table entry

. Create entry - finds an empty translation table entry, opens
it for edit, blanks input fields and displays entry edit
menu

. Exit - returns control to the Command Processing task.

Upon notification that the gateway is going off-line the
task will save the current translation table, destroying any
previously existing copies.

The Edit Handling task is composed of the following
routines:

. Read_trans_tbl - reads the previously stored translation
table

. Ed_trans_tbl - oversees the table edit session

. Display_edit_screen - displays all or part of the edit

screen using the data and menu indicated by the caller

. Det_ed_act - determines next action to perform based on
operator input

. Ed_sel_row - edits a selected row in the translation table

. Up_X25_addr,Up_TCP_addr,Up_ISDN_addr - accepts updates to
the addresses, performing the necessary validation

. Get_input_addr - performs generalized actions required to
input an address

. Store_trans_tbl - stores the translation table in a disk
file for later use.

3.2.1.4 Common Routines. The MMI module maintains the following
common routines which are used by all of its tasks:

. Output_message - outputs a message to the message area of
the screen and to the log file if trace is enabled

. Wait_user_input - waits for user keyboard input while
calling the Gateway Driver module to check for network
activity to process.

3.2.2 Gateway State Handling

This module performs the actions required to initialize the
gateway to an operating state and to gracefully return it to a
non-operational state. The initialization processes include
initjalization of the interface cards and setting up for call
processing. Gateway shutdown includes clearing all existing
calls. The following subsections discuss these tasks in greater
detail.

3.2.2.1 I/0 card Initialization Task. This task manages the
initialization of the I/0 adapter cards and their corresponding

NETBIOS interface. 1Initialization processing is handled by
manufacturer supplied initialization programs executed as batch
files through the "C"/DOS interface. The following batch files
are maintained to initialize the I/O adapter cards:

. ISDN_START. BAT
. TCP_START. BAT
. X25_START. BAT.

Initialization of NICs can be performed in trace or no-trace
modes. Card initialization in trace mode will result in display
to the operator of the intermediate steps in the process as well
success or failure indications. The following batch files are
maintained:

. ISDN_TRACE.BAT
. TCP_TRACE. BAT
. X25_TRACE.BAT.

The operator can choose to initialize only a subset of the
supported links if all of the interface types are not available
in the current environment. Only those protocols which have been
initialized will be set up for call processing in the next task.
There are no "C" routines in the I/O Initialization task.

3.2.2.2 Setup for Call Processing Task. This task sets up the

previously initialized cards to receive their first incoming
call. To set up an individual protocol’s NETBIOS there must be
at least one translation table entry and the card must have been
previously initialized. Attempts to access cards that have not
been set up for call processing will result in termination of the
offending call. This task will indicate the presence of any
uninitialized cards to the operator. Method of call setup varies
by protocol type and is discussed in the following paragraphs.

X.25 Ca essi Setu

If the X.25 card has been initialized then this task will

3-11

3 N 3 mE =

start a listen for each X.25 address contained in the translation
table which can accept incoming calls. Incoming calls are
possible if the address is located on a remote gateway or if it
has a TCP translation. Gateway location is determined by
comparing the end user’s ISDN location to the local gateway
address. Use of the facility matching capablllty of X.25 is
ignored in the present implementation. Memory is allocated from
dynamic memory to hold the listen requests. The pointer to the
request is stored in the translation table entry for this
address. Listen commands are initiated by sending a listen
command to the X.25 NETBIOS.

TCP/IP Call Processing Setup

If the TCP/IP card has been initialized then this task will
start a listen for each address/port ID combination contained in
the translation table which is deemed capable of receiving calls.
An address is deemed capable of receiving calls if it is on a
remote gateway or it has an X.25 translation. The initiated
listen will match only those calls destined to this address/port
combination. Memory is allocated for each listen packet and a
pointer to the packet is stored in the translation table entry.
The translation table entry number is used as a user supplied
process id in the packet for ease of reference later. Listens
are initiated by sending the listen command to the TCP/IP
NETBIOS.

ISDN cCall Processing Setup

If the ISDN card and corresponding NETBIOS have been
initialized this task will perform the necessary actions to allow
the gateway to receive ISDN calls. Calls are made to the ISDN
NETBIOS SIP and X25D DPP to establish logical sessions for the
current gateway session. Using the session numbers the X25D
processes are initialized to contain the current gateway
operational parameters for this link. Finally, a Receive is
queued with the X25D driver to receive the next driver to
application notification regarding the current session.

Setu utines

The Setup for Call Processing task is composed of the
following routines:

. Setup_gate - oversees the gateway setup function
. Init_X25_listen - determines which X.25 addresses require
listens
. X25_listen - queues a listen with the X.25 NETBIOS for the
3-12

N A]

given address

. Init_TCP_listen - determines which TCP addresses require
listens
. TCP_listen - queues a listen with the TCP NETBIOS for the

given address/pnrt combination

. ISDN_X25D - requests logical session number from the ISDN
X25D process of the NETBIOS

. ISDN_SIP - requests the logical session number from the ISDN
SIP process of the NETBIOS

. ISDN_start_DPP - loads the X25D process with the current
session information

. ISDN_call_wait - queues a receive request with the DPP to
receive the next session information packet.

3.2.2.3 call Clearing Task. Upon receipt of an operator command
to clear the existing calls this task will perform the necessary
actions to shut down the I/0 adapter card and corresponding
NETBIOS processing. X.25 hangups and command cancels are issued
for each of the currently open X.25 links. The task will hang up
the ISDN logical session that cancels all outstanding actions and
calls in that session. For TCP/IP links this task will issue
abort commands to the TCP NETBIOS, closing the links and
cancelling pending receives.

Upon completion of the above processing this task will loop
through the translation table de-allocating previously allocated
listen packets. Once this process is complete this task will
return control to the MMI module. The Call Clearing task is
composed of the Shutdown routine.

3.2.3 Gateway Driver

The Gateway Driver module processes the received messages
from the NETBIOS, determines the required action, and calls the
appropriate routine. Once initiated this module will run
independently, regardless of the current operation being
performed by the MMI module, until a Clear Calls request is
entered by the operator. This module receives input messages
from the NETBIOS and queues the message for processing by the
appropriate Call Processing or Data Transfer modules. The
following subsections describe the major tasks of the Gateway
Driver module.

3.2.3.1 Incoming Packet Handling Task. This task processes the
3-13

WEE U TR TEE B N U Ol BN SN I e IS s o aees e

incoming packet from the NETBIOS by determining its type, command
value, and process identifier. Process IDs are destination
address translation table indices for listens and outstanding
call list indices for other commands. Use of these identifiers
allows the gateway to efficiently determine which previously
established route to take. Protocol type, command and TCP
process IDs are read from the packet. Other process identifiers
are determined based on the protocol and command. X.25 listen
process IDs are determined by searching through the translation
table looking for the listen which has just completed. All other
command process IDs are determined by searching the outstanding
call table using the link identifier from the incoming packet as
a key.

Once the required data has been found this task inserts the
information into the Pending Action queue. The Pending Action
queue is a FIFO queue used, along with the internal receive
buffers, as the means to schedule a network activity for
sequential processing. Use of this queue provides for orderly
processing of the messages. Once this task has inserted the
processing queue entry it transfers the relevant data to the
buffers indicated by the determined process ID/command
combination. After completion of this copy the task will
transfer control to the Action Initiation task. If no incoming
NETBIOS packet is detected and no queue entries exist that
require processing this task will return control to the calling
module.

The Incoming Packet Handling task is composed of the
following routines:

. Chk_net - oversees the Gateway Driver processing
. Que_X25_LISTEN - processes received X25 listens

. Que_X25_Receive - receives X25 responses and queues the
action

. Que_ISDN_act,Que_ISDN_control,Que_ISDN_receive - queues the
various ISDN messages received

. Que_TCP_act - queues the TCP messages received.

3.2.3.2 Action Inijtiation Task. This task takes the queued

actions from the Pending Action queue and initiates the
appropriate Call Processing or Data Transfer module action.
Received call requests and Hangup requests cause transfer of
control to the Call Processing module. Received statistics
packets cause control transfer to the MMI module. All other
packets result in transfer to the Data Transfer module.

3-14

- ——

The action initiation task is composed of the following
routine: Det_X25_act,Det_TCP_act,Det_ISDN_act - determines the
action required for each individual protocol.

3.2.4 call Processing

The Call Processing module processes incoming call and
hangup requests performing any routing required and performing
the physical setup or teardown on the destination link. This
task also builds the outstanding call routing table used by the
Data Transfer module to determine the destination of a data
packet. The following subsections discuss the major tasks of
this module.

3.2.4.1 cCall Initiation Task. Upon receipt of an incoming call
notification this task checks the list of currently outstanding
calls for the incoming protocol type to determine if an empty
queue slot is available. If an empty slot is found then routing
of the message can begin and control is passed to the Routing
task. If there are no empty queue slots then an error is
indicated and the call request is rejected.

Once the Routing task has completed its determination of the
next link to use this task issues a Call Request to the
destination NETBIOS card. For TCP and X.25 calls this call
Request includes the source and destination address determined by
the Routing task. For ISDN calls the Call Request is made to the
destination node’s local gateway address as indicated in the
translation table. Receipt of a successful return from an ISDN
call request will cause this task to format the destination type,
destination address, source address, and if required TCP port
numbers into an ISDN call header packet and transmit it to the
remote gateway. Successful completion of the Call Request and,
in the case of ISDN, the header transmit request will cause this
task to regard the link as open, update the appropriate call
level statistics, save the new link ID, request that data
received on this link be passed to the gateway and return control
to the calling module. Errors encountered in this processing
will result in rejection of the requested call and clearing of
the internal call list.

The Call Initiation task is composed of the following
routines:

. Proc_X25_incall,Proc_TCP_incall,Proc_ISDN_incall - oversees
the processing of the received call request

. Init_Dest_call -~ selects the output protocol type based on
the stored output of the routing task

. Init_X25_call,Init_TCP_call,ISDN_d_link_open - performs the
physical operations necessary to open a link to the
destination

. Init_ISDN_call - oversees the processing required to open
the ISDN link and transmit the call header

. Fmt_ISDN_hdr - formats and transmits the received ISDN call
header packet

. ISDN_call_setup,X25_call_setup - sets up the transmission
buffers for later use by the Data Transfer task.

3.2.4.2 Call Termination Task. Upon receipt of an incoming
hangup request this task will hang up the requested call. For

remote hanqups this task will determine the process ID and link
ID of the call by searching the call list or, in the case of TCP,
from the process ID field of the request. For internal hangups
(i.e., caused by some link error) this link ID is supplied by the
calling module. Using the destination link ID information this
task will initiate a hangup on the link. Hangups are performed
by sending a Close or hangup command to the destination link’s
NETBIOS. For X.25 a Cancel is also issued to cancel any pending
Receive Request. Hangup errors are displayed to the operator.
Once the hangup has been completed this process will clear the
internal call table entry to indicate that the connection no
longer exists.

The call termination task is composed of the following
routines:

. Hangup_dest - determines the destination type to hangup

. Hangup_ISDN_dest,Hangup_TCP_Dest - oversees the processing
involved in 01051ng these link types

. Disc_ISDN_link,X25_Hangup - formats and sends the Hangup
Request to the NETBIOS

. Proc_TCP_Hangup, ?roc_ISDN_Remcls - processes remote Hangup
Requests received from the NETBIOS. X25 remote Hangups are
received as part of the data and are processed in the
received data routine.

3.2.4.3 Call Routing Task. This task processes incoming X.25
and TCP Call Requests and ISDN call header messages and

determines the destination of the given set of addresses. The
required information will be passed back to the Call Initiation
task.

VS Iy VNI VIS WS Wy ey e e

For X.25 and TCP calls, this task accepts a source and
destination address and source link type. It then checks if the
given addresses require translation into another address base.

If translation is required the task changes the destination type
and indicates that addresses corresponding to the new destination
type should be used. This task will then check the list of
outstanding calls for the destination address type and if the
current call is a duplication then the it will be rejected.

For ISDN calls this task will wait until an ISDN call header
packet has been received. Upon receipt of this packet the task
will extract the destination type and look up the source and
destination addresses in the translation table. Once this
information has been determined the task will check for call
duplication. Failure to find a translation table entry or
detection of a duplicate call will result in call rejection.

The Call Routing task is composed of the following routines:

. Det_X25_dest,Det_TCP_dest - determines the destination of
incoming TCP and X.25 calls

. Proc_ISDN_hdr - determines the destination of incoming ISDN
calls.,

3.2.4.4 Common Routines. The following common routines are used
by the tasks of the Call Processing module:

. Conv_TCP_RX,Conv_ISDN_RX,Set_X25_addr - converts received
addresses to internally usable formats

. Conv_TCP_Tx,Conv_X25_Tx - converts internal addresses to
transmittable formats

. Perf Com_NCB_Act - performs common actions required to
format and ISDN command

. Send_Cmd_5c,Send_cmd_60 - performs the command send to the
X25 and ISDN NETBIOS.

3.2.5 Data Transfer Processing

This module is responsible for performing the actions
required to transfer data from the link it was received on to the
destination link. It performs all error checking and data format
translation. The following subsections discuss these tasks.

3.2.5.1 Received Data Task. This task processes data received

on a link. Upon notification of received data this task
determines which output link to transmit the received data on.

3-17

This determination is made by searching the outstanding call list
for the current call entry for the received data link. The
target link id from this entry, along with the location of the
data and its size are then sent to the Transmit Data task. Upon
completion of the transmission this task will send a new receive
request to the source NETBIOS. Control will then be returned to
the Gateway Driver module.

The Received Data task is composed of the following routine:
Proc_Rx_TCP_Data,Proc_Rx_X25_data,Proc_Rx_ISDN_data - performs
the above actions for each of the protocol types.

3.2.5.2 Transmit Data Task. This task accepts data from the
Received Data task and transmits it on the selected link. Upon
receipt of control from the Received Data task this task
determines the target protocol type from the outstanding call
table of the source protocol. This task then determines the
location of the outstanding call entry in the target call list.
The received data is then copied to the transmit buffer
corresponding to this entry and a Transmit Request is sent to the
target NETBIOS. Results of this request are analyzed and
displayed to the operator.

The Transmit Data task is composed of the following
routines:

. Init_tx_dest - determines the target link type

. Tx_TCP_msqg,Tx_ISDN_msqg,Tx _X25_msg - transmits the message on
the target link.

. Proc_TCP_Tx_conc - analyses the results of TCP transmits.

3.3 NOTES ON CURRENT TMPLEMENTATION

The following limitations exist within the current gateway
implementation.

. The gateway currently processes only those TCP messages
destined for the TCP address specified at load time as the
local address for the gateway. This is a limitation imposed
by the TCP NETBIOS. Correction of this limitation would
require customization of the NETBIOS.

. Most of the parameters for the gateway require that
constants in the gateway software be changed and in some
cases the program be recompiled to change their value. This
limitation could be eliminated by the creation of an install
option or a separate install program to set these parameters
based on screen oriented input. This would require changes

3-18

to the gateway to remove the fixed size, static tables and
replace them with dynamically sized allocated tables.

Network Actions are performed as indivisible actions by the
gateway driver. This means that there is idle time
available for use while the NETBIOS processor is processing
a requested action. This could be improved by dividing
these actions into smaller tasks with boundaries at the
point of NETBIOS access. This would require changes to the
Gateway Driver that would increase its complexity and the
implementation of dynamically sized and allocated buffers
and activity queues for the NETBIOS interfaces.

The method of accessing the translation table and the
outstanding call lists depends heavily on sequential
searches. This method results in a heavy speed penalty as
table size and load increase. To improve this performance
the access method should be changed to reduce or eliminate
the searches on these tables. Preference should be given to
those accesses involved in the data transfer processing as
they appear to be the critical elements of gateway
performance.

The gateway does not currently support such protocol
features as facilities handling for X.25 and user supplied
open data.

4.0 MULTIPROTOCOI, GATEWAY DEMONSTRATION

An operational demonstration was conducted on February 28,
1990, at the Booz, Allen & Hamilton Systems Resource Center
(SRC), Protocol Development And Test Lab in Bethesda, Maryland.
The purpose was to demonstrate the functionality of the
multiprotocol gateway. The demonstration was designed to
exercise the full functionality of the multiprotocol gateway.
The equipment configuration and demonstration description are
given below.

4.1 EQUIPMENT CONFIGURATION

The Protocol Development And Test Lab equipment
configuration is shown in Exhibit 4-1. The configuration
consisted of a DDN X.25 (TCP/IP) end user, a CCITT X.25 end user,
the Multiprotocol Gateway, the TELEOS ISDN Central Office
Emulator, and two ISDN end users. The ISDN end users were used
to simulate remote X.25 and TCP/IP traffic as described below.
The Multiprotocol Gateway is described in sections one through
three of this document. The other components are described in
more detail below.

The DDN X.25 (TCP/IP) end user consisted of a Compaqg 386 PC
with a Frontier Technologies Corporation AdCom2-I Intelligent
Communication Controller card and Super DDN network software
installed. The Adcom2-I interface was connected to the TCP/IP
NIC interface in the Multiprotocol Gateway.

The CCITT X.25 end user consisted of a Wyse 286 PC with an
EICON Technology Adapter card and associated software installed.
The X.25 end user interface was connected to the CCITT X.25 NIC
interface in the Multiprotocol Gateway.

The TELEOS ISDN Central Office Emulator is the TELEOS ASK200
Central Office Simulation System. The ASK200 is an ISDN switch
that allows a developer to test and debug applications on ISDN
terminal equipment. It provides the basic voice and data
features of a 5ESS (4.1 Generic) ISDN switch. It also provides
protocol trace capabilities for the Q.921 and Q.931 protocols on
the D channel. This allows a developer to monitor in real time
the protocol interactions between the ASK200 and any terminal
equipment connected to it.

The first of the ISDN end users consisted of a Compaq 386 PC
using an AT&T 7506 ISDN Telset as an ISDN terminal adapter. The
7506 ISDN Telset is an ISDN voice terminal with associated
asynchronous data module which provides simultaneous voice and
data capabilities. This ISDN end user was used to send/receive

EXHIBIT 4-1

Protocol Development Lab Equipment Configuration

ISDN SWITCH
BRI

BRI

MULTIPROTOCOL
GATEWAY

TCP/NP CCITT X.25
X.25

interactive data transmissions and files to/from the ODN and X.-5
end users. The other ISDN end user was composed of a Wyse 286 PC
with a TELEOS B100PC terminal adapter board and software
installed. Also running on this machine was a modified version
of the gateway software that allowed the end user to accept
multiple calls and store the incoming data. This ISDN end user
was used to demonstrate multiple D channel call completion as
described below.

4.2 OPERATIONAL DEMONSTRATION DESCRIPTION

To fully demonstrate the gateway in its intended environment
an equipment configuration like the one shown in Exhibit 4-2
would be required. At the time of this demonstration, the
equipment needed for the second gateway and additional end users
were not available. However, the full functionality of the
multiprotocol gateway was demonstrated using the equipment
configuration shown in Exhibit 4-1 and by using a step-by-step
approach. This approach is explained below.

During normal gateway operations, the gateway receives
packets from either the ISDN, local X.25 end user, or local
TCP/IP end user. When the multiprotocol gateway receives an
incoming packet, it performs four basic functions:

. Determines the source of the packet (i.e., ISDN, X.25 end
user, TCP/IP end user)

. Determines the destination of the packet (i.e., ISDN, X.25
end user, TCP/IP end user)

. Performs the appropriate protocol translation functions
Sends packet to appropriate destination.

Incoming ISDN packets (t« the gateway) originate from X.25 end
users or TCP/IP end users that access the ISDN through a second
gateway (refer to Exhibit 4-2). These end user packets have been
translated from their native mode formats to ISDN format by the
remote gateway. Therefore, remote end user traffic can be
simulated by sending the appropriate ISDN packets to the local
multiprotocol gateway. Local end user traffic can be simulated
by supplying X.25 and TCP/IP packets to the gatcway from the
local X.25 and TCP/IP end users.

By exercising the above four basic functions, using the
procedures described below, an operational multiprotocol gateway
capability was demonstrated. The stepwise approach to
demonstrating the multiprotocol gateway is summarized in

4-3

EXHIBIT 4-2

Operational Gateway Demonstration Environment

TCcPnp
X.25

CCITT X.25

ISDN SWITCH

BRI

TCP/IP CCITT X.25
X.25

EXHIBIT 4-3

Demonstration Steps

Step 1: Local End User to Remote End User

X.25 —-===- Gateway ----- ISDN Switch =-=--- ISDN End User

TCP/IP ===-- Gateway =----- ISDN Switch =-==-- ISDN End User

Step 2: Remote End User to Local End User

ISDN End User =----- ISDN Switch =----- Gateway ==--- X.25

ISDN End User =---- ISDN Switch =---- Gateway -~--- TCP/IP

Step 3: Local X.25 End User to Local TCP/IP End User

X.25 ====-- Gateway ~----- TCP/IP

TCP/IP ~---- Gateway ----- X.25

Step 4: Two Simultaneous Gateway Calls

X.25 ===-=- Gateway ----- ISDN Switch ===-- ISDN End User
&
X.25 —===- Gateway =—=——-—-- TCP/IP
X.25 ====- Gateway ----- ISDN Switch =----- ISDN End User
&
TCP/IP ===~= Gateway ----=~ ISDN Switch ----- ISDN End User
4-5

Exhibit 4-3 and described in the paragraphs that follow.

The multiprotocol gateway functionality was demonstrated in
four steps:

. Step 1 - local end user to remote end user
communications

. Step 2 -~ remote end user to local end user
communications

. Step 3 - local X.25 end user to local TCP/IP end user
communications

. Step 4 - two simultaneous gateway calls.

As part of each step, both interactive data traffic and a
standard text file (approximately 4855 bytes) were transferred
between network end users through the multiprotocol gateway.
After each gateway call, the gateway statistics were checked and
compared to the actual data. The steps are described in more
detail below.

In Step 1, local end user to remote end user communications
through the gateway was demonstrated. First, an X.25 call was
placed from the local (i.e., directly connected to the gateway)
X.25 end user to an ISDN end user. The ISDN end user was used to
simulate a remote X.25 or TCP/IP end user. This procedure was
repeated with the local TCP/IP end user originating the call.
Step 1 exercised gateway routing and protocol translation
capabilities for outgoing (i.e., to the ISDN) calls.

Step 2 demonstrated remote end user to local end user
communications through the gateway. A call was placed from the
ISDN end user, through the ISDN switch, through the gateway, to
the local X.25 end user. Next, this procedure was repeated using
the local TCP/IP end user as the destination address for the
call. This step showed gateway routing and protocol translation
capabilities for incoming (i.e., from the ISDN) calls.

Completion of local calls through the gateway was
demonstrated in Step 3. This was done by placing a call through
the gateway from the local X.25 end user to the local TCP/IP end
user. This procedure was repeated using the TCP/IP end user as
the originator and the X.25 end user as the destination. This
step exercised the gateway routing and protocol translation
capabilities between X.25 and TCP/IP (transport layer and below)
end users,

Two simultaneous gateway calls were established in Step 4.
First, a gateway call was established between the local X.25 end
user and an ISDN end user. This call was placed on hold at the
X.25 end user machine and a second call was set up through the
gateway from the X.25 end user to the local TCP/IP end user.
Next, a call was established through the gateway between the
local X.25 end user and a remote ISDN end user. During this
call, a second call was established through the gateway between
the local TCP/IP end user and the ISDN end user. Step 4 showed
the gateway’s ability to successfully handle more than one call
at a time.

5.0 RESULTS AND CONCLUSIONS

A multiprotocol gateway has been developed to support
network reconstitution in the event of network disruption. The
gateway allows CCITT X.25 users as well as DDN TCP/IP X.25 users
to use the ISDN D channel packet facilities as a transport
mechanism to reconstitute disrupted portions of their networks.
The gateway allows CCITT X.25 end users and DDN TCP/IP X.25 end
users to communicate with each other by providing a protocol
translation capability between CCITT X.25 packets, DDN TCP/IP
X.25 packets, and ISDN D channel packets (transport level and
below) in a full-duplex mode of operation. The gateway was
implemented on a Compaq 386 platform and uses TELEOS ISDN, EICON
X.25, and Frontier Technologies Corporation DDN X.25 protocol
processing hardware and software drivers. Gateway software,
which interfaces with the protocol processors and software
drivers, was developed in the "C" language. The gateway software
also performs address translation and statistics gathering. Both
link statistics and gateway environment statistics (e.g., packets
processed, data transmitted, data received) can be collected and
displayed.

The multiprotocol gateway demonstration, which took place at
the Booz, Allen & Hamilton Systems Resource Center in Bethesda,
Maryland, showed that the gateway is capable of providing the
services described above. Gateway functionality was demonstrated
in a four-step procedure. This is discussed in Section 4.
Results of the demonstration are discussed below.

In Step 1, locally originated calls were established from an
X.25 end user and a TCP/IP end user, through the gateway, to a
remote X.25 and TCP/IP end user (simulated by an ISDN end user)
respectively. Step 2 demonstrated that the gateway can support
calls originating from remote end users with local X.25 and
TCP/IP destinations. A local X.25 to local TCP/IP end user call
was established in Step 3. In each of these steps, interactive
traffic was sent across each connection. Also, standard text
files ranging in size from 4900 bytes to 21,500 bytes were sent
across the connections. 1In every case, the gateway performed as
expected. No problems were encountered.

Step 4 showed that the multiprotocol gateway can support
multiple, simultaneous calls. In addition to the specified
procedure, 3 simultaneous calls were established through the
gateway. A call was established between the local X.25 end user
and a remote ISDN end user (Note: the ISDN end users were used to
simulate remote X.25 and TCP/IP end users). Next, a call was
established between the local TCP/IP end user and a remote ISDN
end user. At this point, a third call was established between
the local X.25 end user and the local TCP/IP end user. Standard

5-1

text files were sent between the X.25 and ISDN end users, and the
TCP/IP and ISDN end users simultaneously. Although transmission
of the files was a little slower than that experienced in Steps 1
through 3, the files were transmitted without any problems.

At the end of each step, gateway statistics were checked
using the menu based Man-Machine Interface. The gateway’s MMI
was clear and easy to use. Using the gateway statistics
utilities during data transmission slowed gateway throughput
considerably. This was expected. Gateway timing parameters were
also measured using utilities contained in the software. Average
delay for call setup - for the equipment configuration in the lab
- was on the order of 160 milliseconds. Call setup delay will
depend on components in addition to the gateway such as ISDN
switch and destination end user. Average data handling delay was
approximately 79 milliseconds. Average queuing delay was less
than 15 milliseconds. This is well within the specified gateway
timing parameters.

It should be noted that the multiprotocol gateway software
is the result of a proof-of-concept gateway development. There
are several features that can be incorporated into the gateway to
make the gateway more functional. These are described in Section
3.3. From a NCS perspective, these features should be researched
and implemented because they provide insight and guidance on how
these features should be provided for in a production version of
the gateway.

In conclusion, the gateway performed as expected. It was
able to automatically identify the protocol of the packet being
received and switch to the appropriate transformation and mapping
routines. The demonstration exercised the gateway’s routing and
protocol/address translation capabilities and demonstrated the
gateway’s ability to support multiple simultaneous calls.

OF ACRONYMS

LIST

ACRONYM

BRI
bps

CCITT

DCE
DPP
DTE

DDN

FIFO
GTM
ID
ISDN
Ip
kbps
kB
MB

MPU

NS/EP

NIC

LIST OF ACRONYMS

DESCRIPTTION

Basic Rate Interface
Bits per second

The International Telegraph and Telephone
Consultative Committee

Data circuit-terminating equipment
Data Protocol Processing

Data terminal equipment

Defense Data Network

Department of Defense

First In First oOut

Gateway Translation Matrix
Identifier

Integrated Services Digital Network
Internet Protocol

Kilobits per second

Kilobytes

Megabytes

Master Processing Unit

Man-Machine Interface

National Security and Emergency
Preparedness

Network Interface Card

OMNCS

PC

SDL

SIP

TA

TCP

Office Of The Manager, National
Communications System

Personal Computer

Random Access Memory

Specification and Description Language
Signal Input Processor

Terminal Adaptor

Transmission Control Protocol

